行业发展

电解水和氢气生物学研究(3)

发布时间:2023-07-10本文来源: 氢思语
3.电解水的历史及其与氢气的联系
水电解是指将水电分解成氢气和氧气。这个电化学反应是一个氧化还原反应,包括两个反应:电子还原氢离子形成氢气的还原反应,氢氧根离子被剥夺电子氧化为氧气。
通过使用不受氢离子和氢氧根离子影响的半透膜,可以在阴极生成含氢气的碱性水,在阳极生成含氧气的酸性水。电解分离后的阴极产生的水也被称为“电解还原水”使用“电解”是因为它经过电解,而使用“还原”是由于在阴极处的还原反应。按照一般习惯“电解还原水”把称为“电解水”。其实这并不够准确。电解水也常被称为“碱性离子水”。
电解水领域经常使用的术语“电离”一词可以说是用词不当,因为水分子本身不是离子,电解后的水中仍然是电中性水分子,不是含有正电荷的水分子或含有负电荷的水分子。水经过电处理(电解)后,阳极形成更多氢离子,是因为氢氧根离子被消耗导致氢离子剩余更多。相反,在阴极则剩余更多氢氧根离子。造成阳极变为酸性,阴极变为碱性。但是,氢氧根和氢离子仍然等于水的离子化产物,两种离子浓度乘积总等于10-14。因此,产生的水不包含比原水更多的离子,符合电中性定律,而且水本身并没有真正电离。所谓水被电解,不是水分子被电解,而是水中的氢离子和氢氧根离子分别被氧化和还原。这话听起来怎么如佛经,所谓电解水,非电解水,是名电解水。
水被电离的情况也能发生,一般是受到强辐射线如伽马射线引起电离辐射效应,发生电离辐射时,水分子可被强射线攻击并切割成氢原子和氢氧自由基。水电离和水变成氢离子和氢氧根离子不同的是,前者共价键被切割,后者在被保留给氢氧根离子。
水被电解后产生电解水,具有一些特点,还原电解水具有高pH、低溶解氧气浓度、高溶解氢气浓度和负氧化还原电位(ORP)。
1931年,日本开始对电解水进行研究,主要用植物和动物进行效应测试,取得了系列成功。
1965年,日本政府批准了碱性水离子化设备,用于缓解各种胃肠道疾病。
1978年,韩国药物管理局也出于类似的原因批准了碱性水离子化器。然而,这些早期几年里,人们完全没有意识到电解水中可溶性氢气是这种水产生生物作用的本质。这是可以理解的,因为这个阶段人们对氢气分子在高等生物领域的任何生物学效应都不了解。(其实这并准确,因为氢气在微生物领域的作用是非常明确的,在植物中的效应也很早就有研究,但这些研究并没有受到电解水领域的关注和探讨,否则不会导致大家一种摸索过程。)
但是这个阶段观察到大量电解水的人体和动物效应。
至少从1985年5月开始,有许多表明使用电解水临床改善的学术记录,这在当时甚至被认为是奇迹。1997年左右,电解水生物医学研究开始增加,此时研究表明,电解水具有抗氧化作用,许多证据发现电解水能预防保护DNA氧化损伤,促进葡萄糖转运蛋白的细胞转运,保护四氧嘧啶诱导胰腺细胞损伤,防止阿司匹林诱导的胃粘膜损伤,抑制脂质过氧化,抗糖尿病和抗癌效果。(此处文献比较多,统一列举在后)
然而,电解水的主要治疗效应基础仍然未知。这个阶段认为电解水产生的氢分子是惰性副产物,没有生物学价值。研究电解水生物学效应时也是通过pH和ORP进行估计,不是通过溶解氢气浓度进行分析。大多数这些早期关于电解水的研究直到2007年(氢气效应被发现)后才报告其溶解的氢气浓度,这时氢气的疾病治疗效果被首次清楚地用学术证据证明。
  1. Tanaka, Y.; Uchinashi, S.; Saihara, Y.; Kikuchi, K.; Okaya, T.; Ogumi, Z. Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer. Electrochim. Acta 200348, 4013–4019. [Google Scholar] [CrossRef]

  2. Shirahata, S.; Hamasaki, T.; Teruya, K. Advanced research on the health benefit of reduced water. Trends Food Sci. Technol. 201223, 124–131. [Google Scholar] [CrossRef]

  3. Fujiyama, Y.; Kitahora, T. Alkaline electrolytic water (alkali ions water) for drinking water in medicine. In Mizu No Tokusei to Atarashii Riyo Gijutsu; Enu-Ti-Esu: Tokyo, Japan, 2004; pp. 348–457. [Google Scholar]

  4. Tashiro, H.; Kitahora, T.; Fujiyama, Y.; Banba, T. Clinical evaluation of alkali-ionized water for chronic diarrhea-placebo-controlled double blind study. Dig. Absorpt. 200023, 52–56. [Google Scholar]

  5. Yan, P.; Daliri, E.B.; Oh, D.H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 20219, 136. [Google Scholar] [CrossRef]

  6. Yoon, Y.S.; Kim, D.H.; Kim, S.K.; Song, S.B.; Uh, Y.; Jin, D.; Qi, X.F.; Teng, Y.C.; Lee, K.J. The melamine excretion effect of the electrolyzed reduced water in melamine-fed mice. Food Chem. Toxicol. 201149, 1814–1819. [Google Scholar] [CrossRef] [PubMed]

  7. Hayashi, H.; Kawamura, M. Clinical Applications of Electrolyzed-Reduced Water. In Animal Cell Technology: Basic & Applied Aspects; Shirahata, S., Teruya, K., Katakura, Y., Eds.; Springer: Dordrecht, The Netherlands, 2002; Volume 12, pp. 31–36. [Google Scholar]

  8. Hanaoka, K. Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J. Appl. Electrochem. 200131, 1307–1313. [Google Scholar] [CrossRef]

  9. Kashiwagi, T.; Kabayama, S.H.; Takaki, M.; Teruya, K.; Otubo, K.; Morisawa, S.; Shirahata, S. Suppression of Oxidative Stress-Induced Apoptosis of Neuronal Cells by Electrolyzed-Reduced Water. Anim. Cell Technol. Meets Genom. 20052, 257–260. [Google Scholar]

  10. Park, E.J.; Ryoo, K.; Lee, Y.; Lee, J.; Lee, M. Protective effect of electrolyzed reduced water on the paraquat-induced oxidative damage of human lymphocyte DNA. J. Korean Soc. Appl. Biol. Chem. 200548, 155–160. [Google Scholar]

  11. Lee, M.Y.; Kim, Y.K.; Ryoo, K.K.; Lee, Y.B.; Park, E.J. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Appl. Biochem. Biotechnol. 2006135, 133–144. [Google Scholar] [CrossRef]

  12. Oda, M.; Kusumoto, K.; Teruya, K.; Hara, T.; Maki, T.; Kabayama, S.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Hayashi, H.; et al. Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In Animal Cell Technology: Products from Cells, Cells as Products, Proceedings of the 16th ESACT Meeting, Lugano, Switzerland, 25–29 April 1999; Springer: Dordrecht, The Netherlands, 2002; pp. 425–427. [Google Scholar]

  13. Li, Y.; Nishimura, T.; Teruya, K.; Maki, T.; Komatsu, T.; Hamasaki, T.; Kashiwagi, T.; Kabayama, S.; Shim, S.Y.; Katakura, Y.; et al. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species. Cytotechnology 200240, 139–149. [Google Scholar] [CrossRef]

  14. Naito, Y.; Takagi, T.; Uchiyama, K.; Tomatsuri, N.; Matsuyama, K.; Fujii, T.; Yagi, N.; Yoshida, N.; Yoshikawa, T. Chronic administration with electrolyzed alkaline water inhibits aspirin-induced gastric mucosal injury in rats through the inhibition of tumor necrosis factor-alpha expression. J. Clin. Biochem. Nutr. 200232, 69–81. [Google Scholar] [CrossRef]

  15. Hamaskai, T.; Sugihara, K.; Teruya, S.; Kabayama, Y.; Katakura, K.; Otsubo, S.; Morisawa, S.; Shirahata, S. The suppressive effect of electrolyzed reduced water on lipid peroxidation. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Fifteenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fuchu, Japan, 11–15 November 2002; Springer: Dordrecht, The Netherlands, 2003; Volume 13, pp. 381–385. [Google Scholar]

  16. Jin, D.; Ryu, S.H.; Kim, H.W.; Yang, E.J.; Lim, S.J.; Ryang, Y.S.; Chung, C.H.; Park, S.K.; Lee, K.J. Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci. Biotechnol. Biochem. 200670, 31–37. [Google Scholar] [CrossRef] [PubMed]

  17. GU, H.Y.; Itokawa, Y.; Maenaka, T.; Nakamura, T.; Oshima, M.; Hasegawa, T.; Suzuki, I.; Ishida, T. Anti-oxidation Effect and Anti Type 2 Diabetic Effect in Active Hydrogen Water. Med. Biol. 2006150, 384–392. [Google Scholar]

  18. Yokoyama, J.-m.K.a.K. Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korea. J. Lab. Anim. Sci. 199713, 187–190. [Google Scholar]

  19. Shirahata, S.; Nishimura, T.; Kabayama, S.; Aki, D.; Teruya, K.; Otsubo, K.; Morisawa, S.; Ishii, Y.; Gadek, Z.; Katakura, Y. Anti-oxidative water improves diabetes. In Animal Cell Technology: From Target to Market, Proceedings of the 17th ESACT Meeting, Tylösand, Sweden, 10–14 June 2001; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]

  20. Komatsu, T.; Katakura, Y.; Teruya, K.; Otsubo, K.; Morisawa, S.; Shirahata, S. Electrolyzed reduced water induces differentiation in K-562 human leukemia cells. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Fifteenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fuchu, Japan, 11–15 November 2002; Springer: Dordrecht, The Netherlands, 2003; pp. 387–391. [Google Scholar]

  21. Jun, Y.; Teruya, K.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Shirahata, S. Suppression of invasion of cancer cells and angio-genesis by electrolyzed reduced water. In In Vitro Cellular & Developmental Biology; Springer: Dordrecht, The Netherlands, 2004; Volume 40. [Google Scholar]

  22. Saitoh, Y.; Okayasu, H.; Xiao, L.; Harata, Y.; Miwa, N. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol. Res. 200817, 247–255. [Google Scholar] [CrossRef]

  23. Nishikawa, R.; Teruya, K.; Katakura, Y.; Osada, K.; Hamasaki, T.; Kashiwagi, T.; Komatsu, T.; Li, Y.; Ye, J.; Ichikawa, A.; et al. Electrolyzed Reduced Water Supplemented with Platinum Nanoparticles Suppresses Promotion of Two-stage Cell Transformation. Cytotechnology 200547, 97–105. [Google Scholar] [CrossRef] [PubMed]

  24. Nishikawa, H.; Teruya, K.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Xu, Q.; Shirahata, S. Suppression of two-stage cell transformation by electrolyzed reduced water containing platinum nanoparticles. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Ninth Annual Meeting of the Japanese Association for Animal Cell Technology, Yokohama, Japan, 1–4 September 1996; Springer: Dordrecht, The Netherlands, 2006; Volume 14, pp. 113–119. [Google Scholar]

  25. Hanaoka, K.; Sun, D.; Lawrence, R.; Kamitani, Y.; Fernandes, G. The mechanism of the enhanced antioxidant effects against superoxide anion radicals of reduced water produced by electrolysis. Biophys. Chem. 2004107, 71–82. [Google Scholar] [CrossRef]