研究进展

氢与肠道微生物组

发布时间:2024-02-26本文来源: 氢思语
肠道细菌能代谢氢气,不仅有细菌可以制造氢气,也有许多细菌可以消耗氢气。因此氢气和肠道菌群的关系非常密切。氢气生物学研究后,人们发现外源性氢气如饮用氢水可对肠道菌群产生很大影响,这种影响也可能是氢水发挥生物效应的基础。关于肠道菌群和氢气之间的关系,应该成为氢气医学领域的重要方向。

肠道菌群脑轴已经被推荐作为影响中枢神经系统的神经系统疾病(如AD)的重要治疗靶点。在预防近端肠道细菌过度生长方面起着关键作用有几种机制,如迁移运动复合物、胃酸、肠道免疫系统和胆道分泌物等。

食物在肠道发酵过程中,大肠中可产生氢气。发酵产生的氢气主要被菌群代谢,被肠道粘膜吸收后,可能通过血液循环经呼吸,或者通过肠道经肛门排泄。经过呼吸氢气的释放量主要决定于其产生速率。例如乳果糖的发酵比抗性淀粉或果胶产生的产生更多氢气。

氢水是一种很有前途的功能性饮料,对人体健康有积极影响。

过去十年中,仅仅发表了约150篇与氢水相关的论文,显示出氢水饮用具有多种有利作用[101]。肠道微生物群是一个由100万亿个微生物细胞组成的群落,可以增强人体新陈代谢,免疫功能,营养和其他生理活动。根据研究,饮用氢水可影响肠道微生物群。2018年中国研究小组的研究表明,氢水可缓解辐射诱导的小肠毒性。日本池田等研究了HRW治疗作为脓毒症小鼠模型中细菌易位的预防措施的效果。中国南京农业大学郑等研究了饲喂受霉菌毒素污染的玉米的母仔猪口服氢水和乳果糖后肠道微生物群反应。这项研究的结果还表明,氢水治疗影响了各个肠道段,氢水组的大杆菌和双歧杆菌比对照组少。氢水组恢复了被氯菊酯破坏的肠道屏障,并增加了粪便中丁酸的含量。一项首次人体试验支持氢水及其对肠道微生物群的积极影响。在动物模型中,氢水预防炎症性肠病。口服氢水可通过减少小肠上皮细胞凋亡、维持肠道屏障和紧密连接以及恢复饲喂被镰刀菌毒素污染食物的母仔猪小肠中CLDN107的蛋白表达和分布显示出积极作用。氢水饮用可改善葡萄糖耐量,但拟杆菌水平可能降低。另一项临床研究报道,饮用碱性电解水会增加健康志愿者的双歧杆菌水平。从肠道释放氢气的纳米胶囊可诱导大量粘液菌,并减少代谢功能障碍相关的脂肪肝疾病。肠道微生物群也可能成为氢水生物效应的主要贡献者。研究发现,氢气生理盐水可调节粪便中拟杆菌和杆菌的丰度,这可能是喂食高脂肪饮食的小鼠脂质代谢增加的原因。急性运动可增强乳果糖试验氢气呼气,运动期间结肠细菌是内源性氢气的生产来源。

肥胖和瘦弱的程度对肠道微生物群有影响,这在减肥手术患者的肠道菌群中观察到。因此,氢水可能成为一种即将推出的功能性水饮料,可以增强和调节内源性肠道微生物群

参考文献

Lebaron, T.W.; Singh, R.B.; Fatima, G.; Kartikey, K.; Sharma, J.P.; Ostojic, S.M.; Gvozdjakova, A.; Kura, B.; Noda, M.; Mojto, V.; et al. The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. 2020, 13, 889–896. 
Guinane, C.M.; Cotter, P.D. Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308.
Xiao, H.W.; Li, Y.; Luo, D.; Dong, J.L.; Zhou, L.X.; Zhao, S.Y.; Zheng, Q.S.; Wang, H.C.; Cui, M.; Fan, S.J. Hydrogen-Water Ameliorates Radiation-Induced Gastrointestinal Toxicity via Myd88′s Effects on the Gut Microbiota. Exp. Mol. Med. 2018, 50, e433.
Zheng, W.; Ji, X.; Zhang, Q.; Yao, W. Intestinal Microbiota Ecological Response to Oral Administrations of Hydrogen-Rich Water and Lactulose in Female Piglets Fed a Fusarium Toxin-Contaminated Diet. Toxins 2018, 10, 246.
Sha, J.-B.; Zhang, S.S.; Lu, Y.M.; Gong, W.J.; Jiang, X.P.; Wang, J.J.; Qiao, T.L.; Zhang, H.H.; Zhao, M.Q.; Wang, D.P.; et al. Effects of the Long-Term Consumption of Hydrogen-Rich Water on the Antioxidant Activity and the Gut Flora in Female Juvenile Soccer Players from Suzhou, China. Med. Gas Res. 2018, 8, 135–143.
Shen, N.Y.; Bi, J.B.; Zhang, J.Y.; Zhang, S.M.; Gu, J.X.; Qu, K.; Liu, C. Hydrogen-Rich Water Protects against Inflammatory Bowel Disease in Mice by Inhibiting Endoplasmic Reticulum Stress and Promoting Heme Oxygenase-1 Expression. World J. Gastroenterol. 2017, 23, 1375–1386.
Ji, X.; Zhang, Q.; Zheng, W.; Yao, W. Morphological and Molecular Response of Small Intestine to Lactulose and Hydrogen-Rich Water in Female Piglets Fed Fusarium Mycotoxins Contaminated Diet. J. Anim. Sci. Biotechnol. 2019, 10, 9.
Kamimura, N.; Nishimaki, K.; Ohsawa, I.; Ohta, S. Molecular Hydrogen Improves Obesity and Diabetes by Inducing Hepatic FGF21 and Stimulating Energy Metabolism in Db/Db Mice. Obesity 2011, 19, 1396–1403.
Tanaka, Y.; Kiuchi, M.; Higashimura, Y.; Naito, Y.; Koyama, K. The Effects of Ingestion of Hydrogen-Dissolved Alkaline Electrolyzed Water on Stool Consistency and Gut Microbiota: A Double-Blind Randomized Trial. Med. Gas Res. 2021, 11, 138–144.
Jin, Z.; Sun, Y.; Yang, T.; Tan, L.; Lv, P.; Xu, Q.; Tao, G.; Qin, S.; Lu, X.; He, Q. Nanocapsule-Mediated Sustained H2 Release in the Gut Ameliorates Metabolic Dysfunction-Associated Fatty Liver Disease. Biomaterials 2021, 276, 121030.
Qiu, X.; Ye, Q.; Sun, M.; Wang, L.; Tan, Y.; Wu, G. Saturated Hydrogen Improves Lipid Metabolism Disorders and Dysbacteriosis Induced by a High-Fat Diet. Exp. Biol. Med. 2020, 245, 512–521.
Ehrenpreis, E.D.; Swamy, R.S.; Zaitman, D.; Noth, I. Short Duration Exercise Increases Breath Hydrogen Excretion after Lactulose Ingestion: Description of a New Phenomenon. Am. J. Gastroenterol. 2002, 97, 2798–2802.
Gaskell, S.K.; Taylor, B.; Muir, J.; Costa, R.J.S. Impact of 24-h High and Low Fermentable Oligo-, Di-, Monosaccharide, and Polyol Diets on Markers of Exercise-Induced Gastrointestinal Syndrome in Response to Exertional Heat Stress. Appl. Physiol. Nutr. Metab. 2020, 45, 569–580. Lin, S.; Ye, F.; Rong, W.; Song, Y.; Wu, F.; Liu, Y.; Zheng, Y.; Siqin, T.; Zhang, K.; Wang, L.; et al. Nomogram to Assist in Surgical Plan for Hepatocellular Carcinoma: A Prediction Model for Microvascular Invasion. J. Gastrointest. Surg. 2019, 23, 2372–2382.
Parsanathan, R.; Jain, S.K. Hydrogen Sulfide Regulates Circadian-Clock Genes in C2C12 Myotubes and the Muscle of High-Fat-Diet-Fed Mice. Arch. Biochem. Biophys. 2019, 672, 108054.